Large deviations for the local and intersection local times of fractional Brownian motions

نویسنده

  • Xia Chen
چکیده

Large deviation principle for the non-linear functionals of non-Markovian models is a challenging subject. A class of such models are Gaussian processes. Among them, the fractional Brownian motions are perhaps the most important processes. In this talk, I will talk about some recent progress achieved in the large deviations for local times and intersection local times of fractional Brownian motions. The approach appears as the combinations of some existing tools well known by the group working on the Gaussian processes, such as Anderson inequality and Cameron-Martin formula, and the ideas developed along the study of large deviations, such as high moment asymtotics and sub-additivity. The talk is based on a collaborating work with Jan Rosinski and Qiman Shao.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviations for local times and intersection local times of fractional Brownian motions and Riemann-Liouville processes

In this paper we prove exact forms of large deviations for local times and intersection local times of fractional Brownian motions and Riemann–Liouville processes. We also show that a fractional Brownian motion and the related Riemann–Liouville process behave like constant multiples of each other with regard to large deviations for their local and intersection local times. As a consequence of o...

متن کامل

Regularity of Intersection Local Times of Fractional Brownian Motions

Let Bi be an (Ni, d)-fractional Brownian motion with Hurst index αi (i = 1,2), and let B1 and B2 be independent. We prove that, if N1 α1 + N2 α2 > d , then the intersection local times of B1 and B2 exist, and have a continuous version. We also establish Hölder conditions for the intersection local times and determine the Hausdorff and packing dimensions of the sets of intersection times and int...

متن کامل

Large and moderate deviations for intersection local times

We study the large and moderate deviations for intersection local times generated by, respectively, independent Brownian local times and independent local times of symmetric random walks. Our result in the Brownian case generalizes the large deviation principle achieved in Mansmann (1991) for the L2-norm of Brownian local times, and coincides with the large deviation obtained by Csörgö, Shi and...

متن کامل

Intersection Local Time for two Independent Fractional Brownian Motions

Let B and e B be two independent, d-dimensional fractional Brownian motions with Hurst parameter H ∈ (0, 1) . Assume d ≥ 2. We prove that the intersection local time of B and e B I(BH , e BH) = Z

متن کامل

Large deviations for Brownian intersection measures

We consider p independent Brownian motions in Rd . We assume that p ≥ 2 and p(d − 2) < d. Let `t denote the intersection measure of the p paths by time t, i.e., the random measure on Rd that assigns to any measurable set A ⊂ Rd the amount of intersection local time of the motions spent in A by time t. Earlier results of Chen [4] derived the logarithmic asymptotics of the upper tails of the tota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009